Minggu, 12 Februari 2012

Sejarah statistik


SEJARAH STATISTIK


A. Pengertian Statistik

Penggunaan istilah statistika berakar dari istilah istilah dalam bahasa latin modern statisticum collegium (“dewan negara”) dan bahasa Italia statista (“negarawan” atau “politikus”).
Gottfried Achenwall (1749) menggunakan Statistik dalam bahasa Jerman untuk pertama kalinya sebagai nama bagi kegiatan analisis data kenegaraan, dengan mengartikannya sebagai “ilmu tentang negara (state)”. Pada awal abad ke-19 telah terjadi pergeseran arti menjadi “ilmu mengenai pengumpulan dan klasifikasi data”. Sir John Sinclair memperkenalkan nama (Statistics) dan pengertian ini ke dalam bahasa Inggris. Jadi, statistika secara prinsip mula-mula hanya mengurus data yang dipakai lembaga-lembaga administratif dan pemerintahan. Pengumpulan data terus berlanjut, khususnya melalui sensus yang dilakukan secara teratur untuk memberi informasi kependudukan yang berubah setiap saat.
Pada abad ke-19 dan awal abad ke-20 statistika mulai banyak menggunakan bidang-bidang dalam matematika, terutama probabilitas. Cabang statistika yang pada saat ini sangat luas digunakan untuk mendukung metode ilmiah, statistika inferensi, dikembangkan pada paruh kedua abad ke-19 dan awal abad ke-20 oleh Ronald Fisher (peletak dasar statistika inferensi), Karl Pearson (metode regresi linear), dan William Sealey Gosset (meneliti problem sampel berukuran kecil). Penggunaan statistika pada masa sekarang dapat dikatakan telah menyentuh semua bidang ilmu pengetahuan, mulai dari astronomi hingga linguistika. Bidang-bidang ekonomi, biologi dan cabang-cabang terapannya, serta psikologi banyak dipengaruhi oleh statistika dalam metodologinya. Akibatnya lahirlah ilmu-ilmu gabungan seperti ekonometrika, biometrika (atau biostatistika), dan psikometrika.
Meskipun ada kubu yang menganggap statistika sebagai cabang dari matematika, tetapi orang lebih banyak menganggap statistika sebagai bidang yang banyak terkait dengan matematika melihat dari sejarah dan aplikasinya. Di Indonesia, kajian statistika sebagian besar masuk dalam fakultas matematika dan ilmu pengetahuan alam, baik di dalam departemen tersendiri maupun tergabung dengan matematika.
Ilmu Statistik merupakan ilmu yang mempelajari proses pencatatan, penyusunan serta pengolahan data. Ilmu ini seusia dengan umur peradaban ini, di mana tradisimenghitung merupakan landasan utama dalam membangun peradaban. Semenjak peradaban Yunani ilmu hitung sudah diperkenalkan, dan menjadi alat utama dalam proses pengambilan keputusan. Fenomena ini bisa dilacak dalam tulisan filsof Yunani seperti Aristoteles, maupun Plato yang mengusulkan sistem pemilihan langsung terhadap pejabat publik di mana di kemudian hari dikenal dengan demokrasi langsung. Untuk menghitung siapa yang paling diterima oleh masyarakat dalam pemilihan tersebut maka aspek ilmu hitung menjadi dasar alat pembenar.Ilmu hitung kemudian berkembang pesat lagi pada masa imperium Romawi. Angkaangka yang disimbolkan dalam peradaban Yunani dikembangkan dengan simbol Romawi. Meski angka Romawi tidak praktis, dalam batas tertentu memberikan pengaruh yang luas bagi perkembangan ilmu hitung. Angka Romawi mampu memberikan lambang terhadap angka dalam jumlah yang lebih banyak dibandingkan dengan angka Yunani.
Puncak peradaban ilmu hitung menjadi semakin cepat manakala tradisi Arab mengenalkan simbol angka yang sederhana dan fleksibel. Angka Arab mampu menyederhanakan simbol menjadi simbol yang mudah dimengerti dan dapat digunakan secara berulang secara mudah. Misal, untuk mengungkapkan angka 100, maka cukuphanya menggunakan 2 simbol saja yang sudah dipakai sebelumnya, demikian pula kalau harus menyebut angka 1 trilyun, angka yang dipakai tetap 1 dan 0, tinggal memperbanyak 0-nya saja. Sangat berbeda dengan angka Romawi, setiap perubahan persepuluhan harus dikenalkan simbol baru, yang kemudian tidak dijadikan basis pembuatan angka secara konsisten.
Puncak peradaban ilmu hitung mengalami perkembangan yang sangat pesat, tatkala tradisi Arab memperkenalkan simbol baru angka 0. Angka ini seakan telah menjadi angka mu’jizat dalam sejarah peradaban ilmu hitung, sebab dengan ditemukannya angka 0, maka akan mempersingkat penulisan-penulisan yang berbasis ribuan sampai tak terhingga. Bayangkan bagaimana menulis simbol satu trilyun jika menggunakan simbol
Romawi. Inilah salah satu sumbangan tradisi Islam dan Arab yang sering dilupakan oleh orang. Ilmu Statistik sebagai bentuk aplikasi dan terapkan ilmu hitung sebagai ilmu murni juga mengalami perkembangan seiring dengan semakin berkembang ilmu hitung. Statistik yang lebih menekankan pada tradisi mencatat dan menyusun, memungkinkan ilmu ini mulai dilirik orang dalam konteks untuk mempergunakan hasil pencatatan dan penyusunan untuk mendapatkan pola. Pola ini menjadi sangat penting untuk dilihat, manakala manusia dihadapkan pada pergerakan peradaban manusia yang semakin kompleks, yang juga berarti jumlah data juga sangat kompleks, hampir setiap detik terdapat peristiwa yang lahir, dan harus didokumentasi. Semakin tersebarnya data, menjadikan banyak fihak perlu mendapatkan data yang sahih, namun mudah dimengerti dan memiliki akurasi yang baik dalam dokumentasinya. Statistik merupakan satu-satunya
ilmu yang bisa menawarkan pada tradisi mencatat ini.
Dalam konteks politik, pola merupakan sebagai gejala sosial yang harus ditangkap secara jelas, bahkan kalau tak mampu membuat dan membaca pola, maka akan berhubungan dengan tingkat pengambilan keputusan yang tidak akurat. Politik yang tidak bisa memisahkan diri dari gejala pengambilan keputusan, mengharuskan untuk mengadop tradisi statistik ini. Keharusan untuk mengambil keputusan secara cepat juga telah menuntut para pengambil keputusan mulai belajar statistik secara lebih seksama. Dengan belajar statitik diharapkan akan mampu memberikan bimbingan pengambilan keputusan yang memiliki akurasi yang tinggi. Sehingga tidaklah mengherankan bahwa pada stadium tertentu, ilmu statitistik merupakan ilmu untuk menjawab bentuk-bentuk probabilitas dalam masyarakat. Dalam kondisi inilah ilmu statistik banyak dipergunakan oleh para pialang pasar untuk melihat fluktuasi harga, dan banyak juga para spekulan memprediksi sesuatu dengan pijakan ilmu statistik. Bahkan yang lebih tragis ilmu statistik pernah menjadi ilmu alat utama bagi kalangan penjudi, guna menemukan kecenderungan peluang yang akan muncul.
Sejarah ilmu statistik menunjukkan bahwa tradisi berfikir disiplin ini banyak dipergunakan para ilmuwan eksak untuk mengembangkan teori-teori baru. Hal ini tidak bisa dilepaskan kepada kemampuan ilmu statistik yang memberikan penjelasan yang memuaskan dalam proses pengukuran baik di sisi metode, kesederhanaan maupun kekonsistenannya. Sumbangan ilmu statistik dalam bidang ilmu sosial belumlah menunjukkan angka yang berarti sampai abad ke 18. Baru setelah sistem ekonomi berbasis uang menjadi peradaban manusia peran ilmu statistik menjadi sangat penting.
Dalam hal ini, ilmu ekonomi banyak mengadopsi ilmu statistik untuk menjelaskan keseimbangan harga, fluktuasi mata uang bahkan bisa dipergunakan dalam studi perilaku konsumen dan pasar secara luas. Bidang ilmu perbankan merupakan bidang ilmu ekonomi yang juga banyak mengambil metode dari ilmu statistik. Perkembangan ilmu statistik mengalami percepatan yang sangat cepat, dalam dimensi penelitian, baik dalam bidang kajian ilmu eksakta 


Pertanyaan :
 1. Jelskan pengertian dari statistik !
 2. Jelaskan sejarah statistik !
 3. Jelaskan perbedaan statistik dan statistika !
 4. Sebutkan cabang-cabang pada zaman modern saat ini ?
 5. Siapakah yang pertama kali mempopulerkan ilmu statistik ?

Sabtu, 04 Februari 2012

Sejarah Aljabar



Sejarah Aljabar Dari Masa Babilonia

Sejarah aljabar dasar
Aljabar adalah cabang matematika tentang studi tentang struktur , hubungan , dan kuantitas . aljabar dasar adalah cabang yang berhubungan dengan pemecahan untuk operan dari aritmatika persamaan . modern atau aljabar abstrak memiliki asal-usul sebagai abstraksi dari aljabar dasar. Beberapa sejarawan percaya bahwa matematika penelitian awal dilakukan oleh kelas pendeta dari peradaban kuno, seperti Babilonia , untuk pergi bersama dengan ritual keagamaan. Asal-usul aljabar dengan demikian dapat ditelusuri kembali ke kuno matematika Babilonia sekitar empat ribu tahun lalu. 

Etimologi
Kata "aljabar" berasal dari bahasa Arab kata Al-Jabr, dan ini berasal dari risalah yang ditulis dalam 820 oleh matematikawan Persia abad pertengahan, Muhammad bin Musa al-Khwarizmi , berjudul, dalam bahasa Arab, كتاب الجبر والمقابلة atau Kitab al-mutaar fi Hisab al-ğabr wa-l-Muqabala , yang dapat diterjemahkan sebagai Kitab Ringkas tentang Perhitungan oleh Penyelesaian dan Balancing. Risalah yang disediakan untuk solusi sistematis linier dan persamaan kuadrat . Meskipun makna yang tepat dari kata al-jabr masih belum diketahui, sebagian besar sejarawan setuju bahwa arti kata itu sesuatu seperti "restorasi", "selesai", "reuniter patah tulang" atau "bonesetter." Istilah ini digunakan oleh al-Khwarizmi untuk menggambarkan operasi yang dia diperkenalkan, " pengurangan "dan" balancing ", mengacu pada transposisi istilah dikurangi ke sisi lain dari sebuah persamaan, yaitu, pembatalan istilah seperti pada sisi berlawanan dari persamaan.

Babilonia aljabar


Asal mula aljabar dapat dilacak ke kuno Babilonia , yang mengembangkan sistem nomor posisi yang sangat membantu mereka dalam memecahkan persamaan aljabar retoris mereka. Orang Babilonia tidak tertarik dalam solusi yang tepat tetapi perkiraan, dan sehingga mereka biasanya akan menggunakan interpolasi linier untuk nilai menengah perkiraan. Salah satu tablet paling terkenal adalah Plimpton 322 tablet , dibuat sekitar 1900-1600 SM, yang memberikan sebuah tabel dari tiga kali lipat Pythagoras dan merupakan sebagian dari matematika yang paling canggih sebelum matematika Yunani.
Aljabar Babilonia jauh lebih maju dari aljabar Mesir saat itu;. Sedangkan orang Mesir itu terutama berkaitan dengan persamaan linear Babel lebih peduli dengan persamaan kuadrat dan kubik Orang-orang Babel telah mengembangkan operasi aljabar fleksibel dengan yang mereka mampu menambahkan setara dengan sama dan kalikan kedua sisi persamaan dengan jumlah seperti sehingga dapat mengurangi pecahan dan faktor. Mereka akrab dengan bentuk sederhana banyak anjak piutang, tiga istilah persamaan kuadrat dengan akar positif, dan persamaan kubik banyak meskipun tidak diketahui apakah mereka mampu mengurangi persamaan kubik umum.

Aljabar dan Penemunya

Karya klasikalnya yang terbaik di bidang aljabar adalah buku Al-Mukhtasar di Hisab al-jabr wa l-Muqabala. Buku ini juga diterjemahkan dalam bahasa Latin pada abad pertengahan dan menjadi rujukan utama sejarah matematika.

Para pemikir muslim mewarisi ilmu matematika jauh sebelum peradaban Yunani dan Hindu. Kontribusi muslim terhadap perkembangan ilmu matematika dimulai sejak awal abad ke-8 sampai pertengahan abad ke-15. Para ahli matematika muslim itu umumnya berasal dari Iran atau Irak yang muncul bergantian sejalan dengan adanya peperangan selama periode itu.
Perkembangan ilmu matematika meluas ke wilayah barat melalui Turki dan Afrika Utara termasuk sebagian besar wilayah Spanyol sampai perbatasan Cina. Al Khawarizmi, ahli matematika dan astronomi dari Persia, memperkenalkan sebuah metode yang hampir sama dengan penjumlahan bilangan akar kuadrat. Dia juga merupakan orang yang memperkenalkan konsep pengurangan untuk variabel bilangan kuadrat.
Dia juga menyempurnakan dan mengembangkan geometri dengan persamaan kuadrat yang mempunyai dua variabel, seperti lingkaran, elip, parabola, dan hiperbola. Berkat dia, kita kini mengenal istilah aljabar yang merupakan terjemahan dari bahasa Arab Al-Jabr yang diambil dari judul bukunya yang paling terkenal, yaitu Al-Jabr wa l-Muqabala (buku tentang pengurangan dan persamaan).

Aljabar adalah penggabungan teori bilangan-bilangan rasional, irasional, dan geometri. Konsep ini memberikan dimensi dan pengembangan teori matematika yang benar-benar baru dibandingkan teori-teori sebelumnya. Aljabar pulalah yang menjadi dasar pijakan pengembangan teori matematika selanjutnya. Aspek penting lain dari teori aljabar adalah dimungkinkannya penerapan matematika untuk bidang keilmuan eksak lainnya yang belum pernah terjadi di masa lalu.
Khawarizmi adalah salah seorang ilmuwan terhebat pada abad pertengahan dan merupakan ahli matematika terpenting yang terkenal dengan sebutan Bapak Aljabar. Dia menulis buku Al-Jem wa l-afraq bi Hisab al-Hind yang juga disebut Hisab al-Adad al-Hind pada bidang aritmatika yang menggunakan bilangan numerik India termasuk angka nol dan notasi desimal untuk pertama kalinya. Hal ini berkaitan dengan empat operasi dasar matematika, yaitu penambahan, pembagian, pengurangan, dan perkalian.
Kini, naskah asli dalam bahasa Arab buku tersebut sudah hilang, hanya tersedia terjemahan latinnya saja. Bukunya yang lain juga sudah raib tak ketahuan rimbanya. Karya klasikalnya yang terbaik di bidang aljabar adalah buku Al-Mukhtasar di Hisab al-jabr wa l-Muqabala. Buku ini juga diterjemahkan dalam bahasa Latin pada abad pertengahan dan menjadi rujukan utama sejarah matematika.
Buku yang menyajikan lebih dari 800 contoh kasus ini menjadi rujukan dalam memecahkan masalah-masalah keseharian yang dihadapi umat Islam menyangkut masalah tempat tinggal, warisan, hukum, pembagian harta, dan perdagangan.
Buku aslinya yang berbahasa Arab pertama kali ditulis pada tahun 820 M dan diterjemahkan dalam bahasa Latin pada abad ke-12. Patut digarisbawahi bahwa istilah Aljabar (dalam bahasa Latin Algebra) yang ditemukan dalam khasanah bahasa Eropa pada kategori istilah-istilah kuno bidang matematika dan algoritma, adalah bentuk penyimpangan dari nama Khawarizmi.

Arti Aljabar sesungguhnya dalam bahasa Arab adalah pengembalian dengan memindahkan bilangan negatif ke sisi persamaan lainnya agar bilangan tersebut menjadi positif. Adapun istilah Muqabala mengandung pengertian proses menyisihkan bilangan identik dari dua sisi persamaan. Akan tetapi, terjemahan terbaik untuk Hisab al-Jabr wa l-Muqabala, seperti yang diperkenalkan John K Baumgart, adalah ilmu tentang persamaan, sehingga aljabar yang dimaksudkan Khawarizmi adalah retorika bentuk persamaan.
Khawarizmi juga memberikan konsep dasar persamaan kuadrat yang dapat digunakan untuk pembuktian kasus-kasus angka geometri. Konsep dasar aljabar pertama kali diperkenalkan sebagai disiplin ilmu matematika yang independen. Kemudian aljabar diuraikan dengan sangat teliti oleh Khawarizmi untuk diformulasikan menjadi alat analisis menyelesaikan beragam kasus persamaan kuadrat. Formulasi ini dijelaskannya melalui metode penggunaan contoh-contoh praktis. Buku karya Khwarizmi, Hisab al-Jabr wa l-Muqabala tersebut, kini terus digunakan dalam aplikasi ilmu matematika.
Aljabar adalah penggabungan teori bilangan-bilangan rasional, irasional, dan geometri. Konsep ini memberikan dimensi dan pengembangan teori matematika yang benar-benar baru dibandingkan teori-teori sebelumnya. Aljabar pulalah yang menjadi dasar pijakan pengembangan teori matematika selanjutnya. Aspek penting lain dari teori aljabar adalah dimungkinkannya penerapan matematika untuk bidang keilmuan eksak lainnya yang belum pernah terjadi di masa lalu.
Khawarizmi adalah salah seorang ilmuwan terhebat pada abad pertengahan dan merupakan ahli matematika terpenting yang terkenal dengan sebutan Bapak Aljabar. Dia menulis buku Al-Jem wa l-afraq bi Hisab al-Hind yang juga disebut Hisab al-Adad al-Hind pada bidang aritmatika yang menggunakan bilangan numerik India termasuk angka nol dan notasi desimal untuk pertama kalinya. Hal ini berkaitan dengan empat operasi dasar matematika, yaitu penambahan, pembagian, pengurangan, dan perkalian.
Kini, naskah asli dalam bahasa Arab buku tersebut sudah hilang, hanya tersedia terjemahan latinnya saja. Bukunya yang lain juga sudah raib tak ketahuan rimbanya. Karya klasikalnya yang terbaik di bidang aljabar adalah buku Al-Mukhtasar di Hisab al-jabr wa l-Muqabala. Buku ini juga diterjemahkan dalam bahasa Latin pada abad pertengahan dan menjadi rujukan utama sejarah matematika.
Buku yang menyajikan lebih dari 800 contoh kasus ini menjadi rujukan dalam memecahkan masalah-masalah keseharian yang dihadapi umat Islam menyangkut masalah tempat tinggal, warisan, hukum, pembagian harta, dan perdagangan.
Buku aslinya yang berbahasa Arab pertama kali ditulis pada tahun 820 M dan diterjemahkan dalam bahasa Latin pada abad ke-12. Patut digarisbawahi bahwa istilah Aljabar (dalam bahasa Latin Algebra) yang ditemukan dalam khasanah bahasa Eropa pada kategori istilah-istilah kuno bidang matematika dan algoritma, adalah bentuk penyimpangan dari nama Khawarizmi.

Arti Aljabar sesungguhnya dalam bahasa Arab adalah pengembalian dengan memindahkan bilangan negatif ke sisi persamaan lainnya agar bilangan tersebut menjadi positif. Adapun istilah Muqabala mengandung pengertian proses menyisihkan bilangan identik dari dua sisi persamaan. Akan tetapi, terjemahan terbaik untuk Hisab al-Jabr wa l-Muqabala, seperti yang diperkenalkan John K Baumgart, adalah ilmu tentang persamaan, sehingga aljabar yang dimaksudkan Khawarizmi adalah retorika bentuk persamaan.
Khawarizmi juga memberikan konsep dasar persamaan kuadrat yang dapat digunakan untuk pembuktian kasus-kasus angka geometri. Konsep dasar aljabar pertama kali diperkenalkan sebagai disiplin ilmu matematika yang independen. Kemudian aljabar diuraikan dengan sangat teliti oleh Khawarizmi untuk diformulasikan menjadi alat analisis menyelesaikan beragam kasus persamaan kuadrat. Formulasi ini dijelaskannya melalui metode penggunaan contoh-contoh praktis. Buku karya Khwarizmi, Hisab al-Jabr wa l-Muqabala tersebut, kini terus digunakan dalam aplikasi ilmu matematika.


Pertanyaan :

1. Jelaskan secara etimologi pengertian dari aljabar !
2. Jelaskan sejarah munculnya aljabar !
3. Siapakah yang pertama kali memperkenal aljabar ?
4. Sebutkan buku pertama Khawarizmi yang membahas tentang       aljabar ?  
5. Jelaskan sejarah aljabar pada zaman Babilonia !

Kamis, 02 Februari 2012

Sejarah Teori Bilangan

SEJARAH TEORI BILANGAN

 

Teori bilangan

Secara tradisional, teori bilangan adalah cabang dari matematika murni yang mempelajari sifat-sifat bilangan bulat dan mengandung berbagai masalah terbuka yang dapat mudah mengerti sekalipun bukan oleh ahli matematika.
Dalam teori bilangan dasar, bilangan bulat dipelajari tanpa menggunakan teknik dari area matematika lainnya. Pertanyaan tentang sifat dapat dibagi, algoritma Euklidean untuk menghitung faktor persekutuan terbesar, faktorisasi bilangan bulat dalam bilangan prima, penelitian tentang bilangan sempurna dan kongruensi dipelajari di sini.
Pernyataan dasarnya adalah teorema kecil Fermat dan teorema Euler. Juga teorema sisa Tiongkok dan hukum keresiprokalan kuadrat. Sifat dari fungsi multiplikatif seperti fungsi Möbius dan fungsi phi Euler juga dipelajari. Demikian pula barisan bilangan bulat seperti faktorial dan bilangan Fibonacci.
 
Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Simbol ataupun lambang yang digunakan untuk mewakili suatu bilangan disebut sebagai angka atau lambang bilangan. Dalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas untuk meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks.
Prosedur-prosedur tertentu yang mengambil bilangan sebagai masukan dan menghasil bilangan lainnya sebagai keluran, disebut sebagai operasi numeris. Operasi uner mengambil satu masukan bilangan dan menghasilkan satu keluaran bilangan. Operasi yang lebih umumnya ditemukan adalah operasi biner, yang mengambil dua bilangan sebagai masukan dan menghasilkan satu bilangan sebagai keluaran. Contoh operasi biner adalah penjumlahan, pengurangan, perkalian, pembagian, dan perpangkatan. Bidang matematika yang mengkaji operasi numeris disebut sebagai aritmetika.

Jenis bilangan-bilangan Sederhana
Ada berbagai jenis bilangan. Bilangan-bilangan yang paling dikenal adalah bilangan bulat 0, 1, -1, 2, -2, ... dan bilangan-bilangan asli 1, 2, 3, ..., keduanya sering digunakan untuk berhitung dalam aritmatika. Bilangan cacah adalah himpunan bilangan bulat yang tidak negatif, yaitu {0, 1, 2, 3 ...}. Dengan kata lain himpunan bilangan asli ditambah 0. Jadi, bilangan cacah harus bertanda positif. Himpunan semua bilangan bulat dalam buku-buku teks aljabar biasanya dinyatakan dengan lambang Z dan sedangkan himpunan semua bilangan asli biasanya dinyatakan dengan lambang N.
Setiap bentuk rasio p/q antara dua bilangan bulat p dan bilangan bulat tak nol q disebut bilangan rasional atau pecahan. Himpunan semua bilangan rasional ditandai dengan Q.
 
Gambaran sejarah purbakala dari Matematika
Pada mulanya di zaman purbakala banyak bangsa-bangsa yang bermukim sepanjang sungai-sungai besar. Bangsa Mesir sepanjang sungai Nil di Afrika, bangsa Babilonia sepanjang sungai Tigris dan Eufrat, bangsa Hindu sepanjang sungai Indus dan Gangga, bangsa Cina sepanjang sungai Huang Ho dan Yang Tze. Bangsa-bangsa itu memerlukan keterampilan untuk mengendalikan banjir, mengeringkan rawa-rawa, membuat irigasi untuk mengolah tanah sepanjang sungai menjadi daerah pertanian untuk itu diperlukan pengetahuan praktis, yaitu pengetahuan teknik dan matematika bersama-sama.
Sejarah menunjukkan bahwa permulaan Matematika berasal dari bangsa yang bermukim sepanjang aliran sungai tersebut. Mereka memerlukan perhitungan, penanggalan yang bisa dipakai sesuai dengan perubahan musim. Diperlukan alat-alat pengukur untuk mengukur persil-persil tanah yang dimiliki. Peningkatan peradaban memerlukan cara menilai kegiatan perdagangan, keuangan dan pemungutan pajak. Untuk keperluan praktis itu diperlukan bilangan-bilangan.


Awal Bilangan

Bilangan pada awalnya hanya dipergunakan untuk mengingat jumlah, namun dalam perkembangannya setelah para pakar matematika menambahkan perbendaharaan simbol dan kata-kata yang tepat untuk mendefenisikan bilangan maka matematika menjadi hal yang sangat penting bagi kehidupan dan tak bisa kita pungkiri bahwa dalam kehidupan keseharian kita akan selalu bertemu dengan yang namanya bilangan, karena bilangan selalu dibutuhkan baik dalam teknologi, sains, ekonomi ataupun dalam dunia musik, filosofi dan hiburan serta banyak aspek kehidupan lainnya.
Bilangan dahulunya digunakan sebagai symbol untuk menggantikan suatu benda misalnya kerikil, ranting yang masing-masing suku atau bangsa memiliki cara tersendiri untuk menggambarkan bilangan dalam bentuk simbol diantaranya :

Simbol bilangan bangsa Babilonia:
Simbol bilangan bangsa Maya di Amerika pada 500 tahun SM:
Simbol bilangan menggunakan huruf Hieroglif yang dibuat bangsa Mesir Kuno:
Simbol bilangan bangsa Arab yang dibuat pada abad ke-11 dan dipakai hingga kini oleh umat Islam di seluruh dunia:
Simbol bilangan bangsa Yunani Kuno:
Simbol bilangan bangsa Romawi yang juga masih dipakai hingga kini:
Dalam perkembangan selanjutnya, pada abad ke-X ditemukanlah manuskrip Spanyol yang memuat penulisan simbol bilangan oleh bangsa Hindu-Arab Kuno dan cara penulisan inilah yang menjadi cikal bakal penulisan simbol bilangan yang kita pakai hingga saat ini, seperti yang tampak dalam gambar berikut:
Perkembangan Teori Bilangan
Teori Bilangan Pada suku Babilonia
Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik. Dinamai “Matematika Babilonia” karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik, Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.
Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an. Lempengan ditulis dalam tulisan paku ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.
Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.
Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar. Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desima
l


Sejarah Perkembangan Bilangan
     A.    Zaman Pra Yunani Kuno
Zaman Pra Yunani kuno disebut juga Zaman batu, karena pada masa ini manusia masih menggunakan batu sebagai peralatan dan sisa peradapan manusia yang ditemukan pada masa ini antara lain :alat-alat dari batu tulang berulang hewan sisa beberapa tanaman gambar di gua-gua tempat penguburan tulang belulang manusia purba. Antara abad ke -15 sampai 6 SM, manusia telah menemukan besi, tembaga, dan perak untuk berbagai peralatan. Abad kelima belas Sebelum Masehi peralatan besi dipergunakan pertama kali di Irak, tidak di Eropa Tiongkok. Pada abad ke-6 SM di Yunani muncullah Filsafat. Pada zaman pra Yunani Kuno di dunia ilmu pengetahuan dicirikan berdasarkan  know how yang dilandasi pengalaman empiris. Disamping itu, kemampuan berhitung ditempuh dengan cara korespodensi satu - satu  atau proses pemetaan. Contoh cara menghitung hewan yang akan masuk dan keluar kandang dengan kerikil. Namun pada masa ini manusia sudah mulai memperhatikan keadaan alam semesta sebagai suatu proses alam. Dengan demikian lama kelamaan mereka juga memperhatikan  dan menemukan hal-hal seperti berikut :
  1.   Gugus bintang dilangit sebagai suatu kesatuan. Gugusan ini kemudian diberi nama misalnya : Ursa Minor,     Ursa Manyor, Pisces, Scorpio, dan lain-lain, yang sekarang dikenal dengan nama zodiac
  2.      Kedudukan matahari dan bulan pada waktu terbit dan tenggelam, bergerak dalam rangka zodiak tersebut.
  3.      Lambat laun dikenal pula bintang-bintang yang bergerak diantara gugusan yang sudah dikenal tadi, sehingga ditemukan planet Mercurius, Venus, Mars, Yupiter, dan Saturnus, disamping matahari dan bulan
  4.      Akhirnya dapat pula dihitung waktu Bulan kembali pada bentuknya yang sama antara 28 sampai dengan 29 hari.
  5.      Waktu timbul dan tenggelamnya matahari di cakrawala yang berpindah-pindah dan memerlukan kurang lebih 365 hari sebelum kembali kedudukan semula.
  6.      Ketika mata hari timbul tenggelam sebanyak 365 kali, Bulan juga mengalami perubahan sebanyak 12 kali. Berdasarkan hal itu kelak ditemukan perhitungan kalender.
  7.      Ditemukan pula beberapa gejala alam seperti gerhana, yang pada masa itu masih dihubungkan dengan mitologi-mitologi tertentu, sehingga menakutkan banyak orang.
Jadi dapat disimpulkan bahwa pada zaman ini ditandai oleh kemampuan :
      a. Know how dalam kehidupan sehari-hari yang didasarkan pada pengalaman.
b. Pengetahuan yang berdasarkan pengalaman itu diterima sebagai Fakta dengan sikap receptive mind, keterangan masih dihubungkan dengan kekutan magis.
c. Kemampuan menemukan abjad dan sistem bilangan alam sudah menampakkan perkembangan pemikiran manusia ketingkat abstraksi.
d. Kemampuan menulis, berhitung, menyusun kalender yang didasarkan atas sintesis terhadap hasil abstraksi yang dilakukan.
e. Kemampuan meramalkan suatu peristiwa atas dasar peristiwa-peristiwa sebelumnya yang pernah terjadi
     B.     Zaman Yunani Kuno
Tokoh filsafat pada zaman Yunani Kuno adalah Socrates (469 -399 SM), Plato (427-347 SM), dan Aristoteles (384-322 SM) Pidarta (2007). Zaman ini di pandang sebagai zaman keemasan filsafat, karena pada masa ini orang memiliki kebebasan untuk mengungkapkan ide-ide atau pendapatnya. Di zaman ini banyak sekali pendapat-pendapat para ilmuan seperti pendapat orang Yunani Kuno dan  Mesir Kuno tentang bilangan, penemuan angka nol maupun nilai tempa

  
1   Bilangan.
Konsep bilangan pada awalnya hanyalah untuk kepentingan mereka menghitung dan mengingat jumlah. Lambat laun, setelah para ahli matematika menambah perbendaharaan simbol dan kata-kata yang tepat untuk mendefinisikan bilangan, bahasa matematika ini menjadi sesuatu yang penting dalam setiap perubahan kehidupan. Tak heran lagi, bilangan senantiasa hadir dan dibutuhkan dalam sains, teknologi, dan ekonomi bahkan dalam dunia musik, dll. Dahulu, ketika orang primitif hidup di gua-gua dengan mengandalkan makanannya dari tanaman dan pepohonan di sekitar gua atau berburu untuk sekali makan, kehadiran bilangan, hitung menghitung, atau matematika tidaklah terlalu dibutuhkan. Tetapi, tatkala mereka mulai hidup untuk persediaan makanan, mereka harus menghitung berapa banyak ternak miliknya dan milik tetangganya atau berapa banyak  persediaan makanan saat ini, mulailah mereka membutuhkan dan menggunakan hitung menghitung. Pada awalnya cukuplah menggunakan konsep lebih sedikit dan lebih banyak untuk melakukan perhitungan. Misalnya, untuk membandingkan dua kelompok kupu-kupu yang berbeda banyaknya. Mereka hanya bisa membandingkan banyak sedikitnya kedua kelompok kupu-kupu itu. Akan tetapi, kepastian jumlah tentang milik seseorang atau milik orang lain mulai dibutuhkan, sehingga mulai mengenal dan belajar perhitungan sederhana. Mula-mula, manusia menggunakan kerikil, menggunakan simpul pada tali, menggunakan jari jemarinya, atau memakai ranting untuk menyatakan banyak hewan dan kawanannya atau anggota keluarga yang tinggal bersamanya. Inilah dasar pemahaman tentang konsep bilangan. Ketika seseorang berfikir tentang bilangan dua, maka dalam benaknya telah tertanam pengertian terdapat benda sebanyak dua buah. Misalnya ada dua katak dan dua kepiting, dan selanjutnya kata ”dua” dilambangkan dengan ”2”. Karena menyatakan bilangan dengan menggunakan kerikil, ranting, atau jari dirasakan tidak cukup praktis, maka orang mulai berpikir untuk menggambarkan bilangan itu dalam suatu lambang. Lambang (simbol) untuk menulis sebuah bilangan disebut angka. Misalnya , orang Babilonia mengembangkan tulisan kuno berbentuk baji, yang menggambarkan lambang-lambang berbeda, menyerupai tongkat yang ujungnya tajam pada tanah liat basah yang dibentuk menjadi batu bata merah. Lambang bilangan yang dibentuk dari baji tersebut sepeti pada gambar:

     C.    Zaman Modern
Pada bagian sebelumnya kita telah mengenal bagaimana suatu suku bangsa  membuat sebuah sistem penulisan bilangan (sistem numerasi) yang berlaku untuk bangsanya, seperti yang dikembangkan oleh Bangsa Yunani Kuno, dan bangsa Mesir Kuno dan lain-lain. Namun demikian pada zaman modern sekarang ini sistem penulisan bilangan yang dikenal dan dipakai oleh hampir setiap bangsa yang ada di dunia ini adalah sistem penulisan bilangan yang dikembangkan oleh bangsa Arab, dan sekarang ini dikenal dengan ”Angka Arab” dengan angka-angka pokoknya adalah 0,1,2,3,4,5,6,7,8, dan 9, sedangkan angka-angka yang lebih dari 9, ditulis dengan angka-angka pokok tadi. Misalnya, bilangan sepuluh ditulis sebagai ”10” yaitu kombinasi angka 1 dan 0, demikian juga bilangan ”dua puluh empat” ditulis dengan ”24” yaitu kombinasi angka 2 dan 4.        
Dari sistem penulisan angka Arab tadi, kemudian orang-orang` mulai memberi nama-nama khusus terhadap bilangan-bilangan tertentu yang dikembangkan oleh bangsa Arab itu untuk suatu keperluan tertentu.
Macam – macam bilangan:
  a      Bilangan Bulat adalah bilangan yang terdiri atas bilangan positif, bilangan nol, dan bilangan negatif.
Misal : ….-2,-1,0,1,2….
  b      Bilangan asli adalah bilangan bulat positif yang diawali dari angka 1(satu) sampai tak terhingga.
Misal : 1,2,3….
  c      Bilangan cacah adalah bilangan bulat positif yang diawali dari angka 0 (nol) sampai tak terhingga.
Misal : 0,1,2,3,….
  d     Bilangan prima adalah bilangan yang tepat mempunyai dua faktor yaitu bilangan 1 (satu) dan bilangan itu sendiri.
Misal : 2,3,5,7,11,13,…..
(1 bukan bilangan prima, karena mempunyai satu faktor saja).
  e      Bilangan komposit adalah bilangan yang bukan 0, bukan 1 dan bukan bilangan prima.
Misal ; 4,6,8,9,10,12,….
  f       Bilangan rasional adalah bilangan yang dinyatakan sebagai suatu pembagian antara dua bilangan bulat (berbentuk bilangan , dimana a dan b merupakan bilangan bulat).
Misal:
  g      Bilangan irrasional adalah bilangan yang tidak dapat dinyatakan sebagai pembagian dua bilangan bulat.
Misal: π,  , log 7 dan sebagainya.
  h      Bilangan riil adalah bilangan yang merupakan penggabungan dari bilangan rasional dan bilangan irrasional
Misal:  dan sebagainya.
i        Bilangan imajiner (bilangan khayal) adalah bilangan yang ditandai dengan i, bilangan imajiner i dinyatakan sebagai . Jadi, jika i =   maka i2= -1
Misal:
    
                     =
                     =            2  i
                     = 2i
Jadi, .
j        Bilangan kompleks adalah bilangan yang merupakan penggabungan dari bilangan riil dan bilangan imajiner.
Misal;
Log


Simbol bilangan bangsa Maya di Amerika pada 500 tahun SM:

Ada pula penulisan angka yang dipergunakan oleh bangsa Yunani Kuno. Menulis bilangan dengan menggunakan huruf abjad yang mereka pakai  seperti tampak pada gambar:

Sekitar 3500 tahun S.M,Orang-orang Mesir kuno (Egypt) menggunakan Hieroglif untuk menuliskan bilangan-bilangan seperti tampak pada gambar:

Dalam perkembangan selanjutnya, angka hindu –Arab kuno ditemukan dalam manuskrip Sepanyol abad X dan menjadi cikal bakal bagi angka-angka yang dipakai sekarang ini seperti diperlihatkan pada gambar:

Pada abad ke 11, bangsa arab menulis lambang bilangan (angka) dari angka 1 sampai dengan 9 seperti yang ada dan terus dipakai sampai saat ini oleh orang-orang Islam diseluruh dunia seperti tampak pada gambar:

Simbol bilangan bangsa Romawi yang juga masih dipakai hingga kini:
Aplikasi Bilangan dalam Beberapa Bidang

1 A.  Aplikasi Teori Bilangan Komputer
Sistem Bilangan atau Number System adalah suatu cara untuk mewakili besaran suatu item fisik. Sistem Bilangan menggunakan bilangan dasar atau basis (base/radix) yang tertentu. Dalam hubungannya dengan komputer, ada 4 jenis Sistem Bilangan yang dikenal yaitu: Desimal (Basis 10), Biner (Basis 2), Oktal (Basis 8) dan Hexadesimal (Basis 16). Berikut penjelasan mengenai 4 sistem bilangan ini.
a.       Desimal (Basis 10)
Desimal (Basis 10) adalah sistem bilangan yang paling umum digunakan dalam kehidupan sehari-hari. Sistem bilangan desimal menggunakan basis 10 dan menggunakan 10 macam simbol bilangan yaitu: 0, 1, 2, 3, 4, 5, 6, 7, 8 dan 9. Sistem bilangan dasimal dapat berupa integer desimal (decimal integer) dan dapat juga berupa pecahan desimal (decimal fraction). Untuk melihat bilangan desimal dapat digunakan perhitungan seperti berikut, misalkan contoh bilangan desimal adalah 8598. Ini dapat diartikan

Dalam gambar di atas disebutkan Absolut Value dan Position Value. Setiap simbol dalam sistem bilangan desimal memiliki bentuk Absolut Value dan Position Value. Absolut Value adalah nilai mutlak dari masing-masing digit bilangan. Sedangkan Position Value adalah nilai penimbang atau bobot dari masing-masing digit bilangan tergantung dari letak posisinya yaitu bernilai basis di pangkatkan dengan urutan posisinya. Untuk lebih jelasnya perhatikan tabel dibawah ini.
Dengan begitu maka bilangan desimal 8598 bisa diartikan sebagai berikut:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg9_QJ5rVGQVGXuwo01bgLEG9ZBygAlPlJ2yrnPciuhnu_51JO_pI5HugDh0rtBuQtt4-HjRwkpt9zmATD__IlQRWpjWwRGH6qd-eAxypHTRv5G71sMtEF2nf6j6G7SsuxcAn7of0UX3ghc/s320/desimal-03.jpg
Sistem bilangan desimal juga bisa berupa pecahan desimal (decimal fraction), misalnya: 183,75 yang dapat diartikan:
  B. Aplikasi Teori Bilangan Filosofi
Filsafat membahas bilangan sebagai objek studi material artinya filsafat menjadikan bilangan sebagai objek sasaran untuk menyelidiki ilmu tentang bilangan itu sendiri. Objek material filsafat ilmu bilangan adalah bilangan itu sendiri. Bilangan itu sendiri dimulai dari yang paling sederhana, yakni bilangan asli, bilangan cacah, kemudian bilangan bulat, dan seterusnya hingga bilangan kompleks. Sebagai objek formal filsafat, bilangan dikaji hakikat. Pengkajian filsafat tentang bilangan misalnya mengenai apa hakikat dari bilangan itu, bagaimana merealisasikan konsep bilangan yang abstrak menjadi riil atau nyata, bagaimana penggunaan bilangan untuk penghitungan dan atau pengukuran.


Pertanyaan :

1. Apa yang dimaksud dengan bilangan ?
2. Jelaskan perbedaan bilangan asli dan bilangan cacah !
3. Jelaska sejarah munculnya bilangan imajiner !
4. Jelaskan perbedaan bilangan rasional dan bilangan irrasional!
5. Sebutkan jenis bilangan-bilangan sedrhana ?