Geometri
Non Euclid
Non-Euclidean
geometri adalah salah satu dari dua geometri tertentu yang, longgar
berbicara, diperoleh dengan meniadakan Euclidean paralel postulat
, yaitu hiperbolik
dan geometri eliptik
. Ini adalah satu istilah yang, untuk alasan sejarah, memiliki arti dalam
matematika yang jauh lebih sempit dari yang terlihat untuk memiliki dalam
bahasa Inggris umum. Ada banyak sekali geometri yang tidak geometri Euclidean
, tetapi hanya dua yang disebut sebagai non-Euclidean geometri.
Perbedaan
penting antara geometri Euclidean dan non-Euclidean adalah sifat paralel
baris. Euclid
‘s kelima mendalilkan, yang paralel mendalilkan
, setara dengan yang Playfair postulat
yang menyatakan bahwa, dalam bidang dua dimensi, untuk setiap garis yang
diketahui ℓ dan A titik, yang tidak pada ℓ, ada tepat satu
garis melalui A yang tidak berpotongan ℓ. Dalam geometri
hiperbolik, sebaliknya, ada tak terhingga
banyak baris melalui A ℓ tidak berpotongan, sementara dalam geometri
eliptik, setiap baris melalui A memotong ℓ (lihat entri pada geometri hiperbolik
, geometri berbentuk bulat
panjang , dan geometri mutlak
untuk informasi lebih lanjut).
Cara lain
untuk menggambarkan perbedaan antara geometri adalah mempertimbangkan dua garis
lurus tanpa batas waktu diperpanjang dalam bidang dua dimensi yang baik tegak lurus
ke saluran ketiga:
- Dalam geometri Euclidean garis tetap konstan jarak dari satu sama lain bahkan jika diperpanjang hingga tak terbatas, dan dikenal sebagai paralel.
- Dalam geometri hiperbolik mereka “kurva pergi” satu sama lain, peningkatan jarak sebagai salah satu bergerak lebih jauh dari titik persimpangan dengan tegak lurus umum, garis-garis ini sering disebut ultraparallels.
- Dalam geometri berbentuk bulat panjang garis “kurva ke arah” satu sama lain dan akhirnya berpotongan.
Sejarah
Sejarah awal
Sementara geometri Euclidean
, dinamai matematikawan Yunani
Euclid
, termasuk beberapa dari matematika tertua, non-Euclidean geometri tidak secara
luas diterima sebagai sah sampai abad ke-19.
Perdebatan
yang akhirnya menyebabkan penemuan non-Euclidean geometri mulai segera setelah
karya Euclid ‘s Elemen
ditulis. Dalam Elemen, Euclid dimulai dengan sejumlah asumsi (23
definisi, lima pengertian umum, dan lima postulat) dan berusaha untuk
membuktikan semua hasil lain ( proposisi
) dalam pekerjaan. Yang paling terkenal dari postulat sering disebut sebagai
“Kelima Postulat Euclid,” atau cukup dengan ” paralel mendalilkan
“, yang dalam formulasi asli Euclid adalah :
Jika garis
lurus jatuh pada dua garis lurus sedemikian rupa sehingga sudut interior pada
sisi yang sama bersama-sama kurang dari dua sudut yang tepat, maka garis-garis
lurus, jika diproduksi tanpa batas waktu, bertemu di sisi itu yang adalah sudut
kurang dari dua kanan sudut.
Lain yang
hebat matematika telah menemukan bentuk-bentuk sederhana dari properti ini
(lihat postulat paralel
untuk laporan setara). Terlepas dari bentuk dalil, bagaimanapun, secara
konsisten tampaknya lebih rumit dari yang lain Euclid postulat (termasuk,
misalnya, “Antara dua titik garis lurus bisa diambil”).
Setidaknya
seribu tahun, geometers
merasa kesulitan akibat kompleksitas yang berbeda dari kelima postulat, dan
percaya itu bisa dibuktikan sebagai teorema dari keempat lainnya. Banyak
berusaha untuk menemukan bukti oleh kontradiksi
, termasuk matematikawan Arab
Ibn al-Haytham
(Alhazen, abad ke-11), dengan Persia
matematikawan Umar Khayyām
(abad 12) dan Nasir al-Din al-Tusi
(abad ke-13), dan dengan Italia
matematika Giovanni Girolamo Saccheri
(abad 18).
Teorema Ibn
al-Haytham, Khayyam dan al-Tusi pada segiempat
, termasuk segiempat Lambert
dan Saccheri segiempat
, adalah “teorema pertama dari hiperbolik
dan geometri berbentuk bulat
panjang . ” Teorema-teorema bersama dengan
alternatif mereka mendalilkan, seperti aksioma Playfair ‘s
, memainkan peran penting dalam perkembangan selanjutnya dari non-Euclidean
geometri. Upaya-upaya awal pada menantang kelima postulat memiliki pengaruh
yang besar terhadap pembangunan di antara geometers kemudian Eropa, termasuk Witelo
, Levi ben Gerson
, Alfonso
, John Wallis
dan Saccheri. Semua upaya awal dibuat di mencoba untuk merumuskan non-Euclidean
Namun geometri diberikan bukti cacat dari paralel mendalilkan, mengandung
asumsi yang pada dasarnya setara dengan postulat paralel. Upaya-upaya awal itu,
bagaimanapun, memberikan beberapa sifat awal dari geometri hiperbolik dan
eliptik.
Khayyam,
misalnya, mencoba untuk mendapatkan dari setara mendalilkan ia merumuskan dari
“prinsip-prinsip Bertuah” ( Aristoteles
): “Dua garis lurus berpotongan konvergen dan tidak mungkin untuk dua garis
lurus konvergen menyimpang ke arah di mana mereka bertemu. ” Khayyam
kemudian dianggap sebagai tiga kasus yang tepat, tumpul, dan akut yang sudut
puncak dari sebuah segiempat Saccheri dapat mengambil dan setelah membuktikan
sejumlah teorema tentang mereka, ia benar membantah kasus tumpul dan akut
berdasarkan dalil nya dan karena berasal klasik postulat Euclid yang tidak
disadarinya adalah setara dengan postulat sendiri. Contoh lain adalah anak
al-Tusi, Sadr al-Din (kadang-kadang dikenal sebagai “Pseudo-Tusi”), yang
menulis sebuah buku tentang subjek di 1298, berdasarkan pengalaman kemudian
al-Tusi, yang disajikan lain setara hipotesis untuk paralel dalil . “Dia pada
dasarnya revisi kedua sistem Euclidean aksioma dan dalil-dalil dan bukti-bukti
proposisi banyak dari Elemen.” Karyanya diterbitkan di Roma
tahun 1594 dan dipelajari oleh geometers Eropa, termasuk Saccheri yang
mengkritik pekerjaan ini serta yang dari Wallis.
Giordano Vitale
, dalam bukunya Euclide restituo (1680, 1686), menggunakan Saccheri
segiempat untuk membuktikan bahwa jika tiga poin adalah jarak yang sama di
pangkalan AB dan CD KTT, maka AB dan CD di mana-mana berjarak sama.
Dalam sebuah
karya berjudul Euclides ab Omni Naevo Vindicatus (Euclid Dibebaskan dari
Semua Cacat), yang diterbitkan tahun 1733, Saccheri geometri eliptik cepat
dibuang sebagai kemungkinan (beberapa orang lain dari aksioma Euclid harus
dimodifikasi untuk geometri berbentuk bulat panjang untuk bekerja) dan mulai
bekerja membuktikan besar jumlah hasil dalam geometri hiperbolik. Dia akhirnya
mencapai titik di mana ia percaya bahwa hasil menunjukkan ketidakmungkinan
geometri hiperbolik. Klaimnya tampaknya telah didasarkan pada pengandaian
Euclidean, karena tidak ada kontradiksi logis hadir. Dalam upaya untuk
membuktikan geometri Euclidean ia malah tidak sengaja menemukan sebuah geometri
baru yang layak, tapi tidak menyadarinya.
Pada 1766 Johann Lambert
menulis, tetapi tidak mempublikasikan, Theorie der Parallellinien di
mana ia mencoba, sebagai Saccheri lakukan, untuk membuktikan postulat kelima.
Dia bekerja dengan angka yang hari ini kita sebut segiempat Lambert,
suatu segiempat dengan tiga sudut kanan (dapat dianggap setengah dari segiempat
Saccheri). Dia segera menghilangkan kemungkinan bahwa sudut keempat adalah
tumpul, karena memiliki Saccheri dan Khayyam, dan kemudian melanjutkan untuk
membuktikan teorema banyak berdasarkan asumsi sudut akut. Tidak seperti Saccheri,
ia tidak pernah merasa bahwa ia telah mencapai kontradiksi dengan asumsi ini.
Dia telah membuktikan hasil non-Euclidean bahwa jumlah sudut dalam segitiga
meningkat sebagai luas segitiga berkurang, dan ini menyebabkan dia untuk
berspekulasi mengenai kemungkinan model kasus akut pada bola berjari-jari
imajiner. Dia tidak membawa ide ini lebih jauh.
Pada saat ini
itu sangat percaya bahwa alam semesta bekerja menurut prinsip-prinsip geometri
Euclidean.
Penciptaan non-Euclidean geometri
Awal abad
ke-19 akhirnya akan menyaksikan langkah-langkah yang menentukan dalam
penciptaan non-Euclidean geometri. Sekitar 1830, Hungaria
matematika János Bolyai
dan Rusia
matematika Nikolai Lobachevsky
secara terpisah diterbitkan risalah pada geometri hiperbolik. Akibatnya,
geometri hiperbolik disebut Bolyai-Lobachevskian geometri, baik sebagai
matematikawan, independen satu sama lain, adalah penulis dasar non-Euclidean
geometri. Gauss
disebutkan kepada ayah Bolyai, ketika ditampilkan karya Bolyai muda, bahwa ia
telah dikembangkan seperti geometri sekitar 20 tahun sebelumnya, meskipun ia
tidak mempublikasikan. Sementara Lobachevsky menciptakan geometri non-Euclidean
dengan meniadakan paralel mendalilkan, Bolyai bekerja di luar geometri di mana
kedua Euclidean dan geometri hiperbolik yang mungkin tergantung pada k
parameter. Bolyai berakhir karyanya dengan menyebutkan bahwa tidak mungkin
untuk memutuskan melalui penalaran matematis saja jika geometri alam semesta
fisik Euclid atau non-Euclidean, ini adalah tugas untuk ilmu fisik.
Bernhard Riemann
, dalam sebuah kuliah yang terkenal pada 1854, mendirikan bidang geometri Riemann
, membahas khususnya ide-ide sekarang disebut manifold
, Riemannian metrik
, dan kelengkungan
. Ia dibangun sebuah keluarga tak terbatas geometri yang tidak Euclidean dengan
memberikan rumus untuk keluarga metrik Riemann pada bola unit dalam ruang Euclidean
. Yang paling sederhana ini disebut geometri berbentuk bulat
panjang dan dianggap menjadi geometri
non-Euclidean karena kurangnya garis paralel.
Terminologi
Gauss yang
menciptakan istilah “non-euclidean geometri”. Dia merujuk pada karyanya
sendiri yang hari ini kita sebut geometri hiperbolik. Beberapa penulis
modern yang masih menganggap “non-euclidean geometri” dan “geometri hiperbolik”
menjadi sinonim. Pada tahun 1871, Felix Klein
, dengan mengadaptasi metrik dibahas oleh Arthur Cayley
pada tahun 1852, mampu membawa sifat metrik menjadi sebuah lokasi yang
proyektif dan karena itu mampu menyatukan perawatan geometri hiperbolik,
euclidean dan berbentuk bulat panjang di bawah payung projective geometri
. Klein bertanggung jawab untuk istilah “hiperbolik” dan “eliptik” (dalam
sistem, ia disebut geometri Euclidean “parabola”, sebuah istilah yang belum
selamat dari ujian waktu). Pengaruhnya telah menyebabkan penggunaan saat ini
dari “geometri non-euclidean” untuk berarti baik geometri “hiperbolik” atau
“berbentuk bulat panjang”.
Ada beberapa
hebat matematika yang akan memperpanjang daftar geometri yang harus disebut
“non-euclidean” dengan berbagai cara. Dalam disiplin ilmu lainnya, terutama
yang paling matematika fisika
, istilah “non-euclidean” sering diartikan tidak Euclidean .
Aksioma dasar non-Euclidean geometri
Geometri
Euclidean aksiomatik dapat dijelaskan dalam beberapa cara. Sayangnya, sistem
yang asli Euclid lima postulat (aksioma) bukan salah satu dari ini sebagai
bukti nya mengandalkan asumsi tak tertulis beberapa yang juga seharusnya
diambil sebagai aksioma. sistem Hilbert
yang terdiri dari 20 aksioma paling dekat mengikuti pendekatan Euclid dan
memberikan pembenaran untuk semua bukti Euclid. Sistem lain, menggunakan set
yang berbeda dari istilah terdefinisi
mendapatkan geometri yang sama dengan jalan yang berbeda. Dalam semua
pendekatan, bagaimanapun, ada aksioma yang secara logis setara dengan kelima
Euclid postulat, paralel dalil. Hilbert
menggunakan bentuk aksioma Playfair, sementara Birkhoff
, misalnya, menggunakan aksioma yang mengatakan bahwa “tidak ada sepasang yang
sama tetapi tidak kongruen segitiga. ” Dalam salah satu sistem, penghapusan
satu aksioma yang setara dengan postulat sejajar, dalam bentuk apapun yang
diperlukan, dan meninggalkan semua aksioma lainnya utuh, menghasilkan geometri absolut
. Sebagai pertama 28 proposisi Euclid (dalam The Elements) tidak
memerlukan penggunaan postulat paralel atau apa setara dengan itu, mereka semua
pernyataan benar dalam geometri mutlak.
Untuk
mendapatkan geometri non-Euclidean, paralel dalil (atau ekuivalen) harus
diganti oleh yang negasi
. Meniadakan aksioma Playfair ‘s
bentuk, karena itu adalah pernyataan majemuk (… terdapat satu dan hanya satu
…), bisa dilakukan dengan dua cara. Entah ada akan ada lebih dari satu baris
melalui paralel titik ke garis diberikan atau akan ada tidak ada garis melalui
titik paralel ke garis yang diberikan. Dalam kasus pertama, menggantikan
paralel dalil (atau ekuivalen) dengan pernyataan “Di pesawat, diberi titik P
dan garis l tidak melewati P, terdapat dua garis melalui P yang tidak
memenuhi l” dan menjaga semua aksioma lainnya, hasil geometri hiperbolik
. Kasus kedua tidak ditangani dengan mudah. Cukup mengganti paralel mendalilkan
dengan pernyataan, “Dalam pesawat, diberi titik P dan garis l tidak
melewati P, semua garis melalui P memenuhi l”, tidak memberikan satu set
konsisten aksioma. Ini mengikuti sejak garis paralel ada di geometri mutlak , tetapi
pernyataan ini mengatakan bahwa tidak ada garis paralel. Masalah ini dikenal
(dalam kedok yang berbeda) untuk Khayyam, Saccheri dan Lambert dan merupakan
dasar untuk menolak mereka apa yang dikenal sebagai “kasus sudut tumpul”. Untuk
mendapatkan satu set konsisten aksioma yang meliputi aksioma ini tentang tidak
memiliki garis paralel, beberapa aksioma lain harus tweak. Penyesuaian harus
dibuat tergantung pada sistem aksioma yang digunakan. Beberapa diantaranya
tweak akan memiliki efek memodifikasi kedua postulat Euclid dari pernyataan
bahwa segmen garis dapat diperpanjang tanpa batas waktu untuk pernyataan bahwa
garis tak terbatas. Riemann
‘s geometri eliptik
muncul sebagai geometri paling alami memuaskan aksioma ini.
Model non-Euclidean geometri
Untuk rincian lebih lanjut tentang
topik ini, lihat Model non-Euclidean
geometri .
Pada bola,
jumlah sudut segitiga tidak sama dengan 180 °. Permukaan sebuah bola bukan
ruang Euclidean, tetapi secara lokal hukum geometri Euclidean adalah perkiraan
yang baik. Dalam sebuah segitiga kecil di muka bumi, jumlah dari sudut sangat
hampir 180 °.
Dua geometri Euclidean dimensi dimodelkan
dengan gagasan kita tentang “datar pesawat
. “
Geometri Elliptic
Model
sederhana untuk geometri eliptik
adalah bola, di mana garis ” lingkaran besar
“(seperti ekuator
atau meridian
di dunia
), dan poin yang berlawanan satu sama lain (disebut poin antipodal
) diidentifikasi (dianggap sama). Ini juga salah satu model standar dari pesawat proyektif nyata
. Perbedaannya adalah bahwa sebagai model geometri eliptik metrik diperkenalkan
memungkinkan pengukuran panjang dan sudut, sedangkan pada model pesawat
proyektif tidak ada metrik tersebut.
Dalam model berbentuk bulat panjang,
untuk setiap garis yang diketahui ℓ dan titik A, yang tidak pada ℓ,
semua baris melalui A akan berpotongan ℓ.
Geometri hiperbolik
Bahkan
setelah pekerjaan Lobachevsky, Gauss, dan Bolyai, pertanyaannya tetap: apakah
model seperti itu ada untuk geometri hiperbolik
? Model untuk geometri hiperbolik
dijawab oleh Eugenio Beltrami
, pada 1868, yang pertama kali menunjukkan bahwa permukaan yang disebut pseudosphere
memiliki sesuai kelengkungan
untuk model sebagian dari ruang hiperbolik
, dan dalam makalah kedua di tahun yang sama, mendefinisikan Model Klein
yang model keseluruhan dari ruang hiperbolik, dan digunakan ini untuk
menunjukkan bahwa geometri Euclidean dan geometri hiperbolik adalah equiconsistent
, sehingga geometri hiperbolik adalah logis konsisten
jika dan hanya jika geometri Euclidean adalah. (Implikasi terbalik berikut dari
horosphere
model geometri Euclidean.)
Dalam model
hiperbolik, dalam bidang dua dimensi, untuk setiap garis yang diketahui ℓ
dan Titik, yang tidak pada ℓ, ada tak terhingga
banyak baris melalui A yang tidak berpotongan ℓ.
Dalam model
ini konsep-konsep non-Euclidean geometri sedang diwakili oleh objek Euclidean
dalam pengaturan Euclidean. Ini memperkenalkan sebuah distorsi perseptual
dimana garis-garis lurus dari geometri non-Euclidean yang diwakili oleh kurva
Euclidean yang secara visual membungkuk. Ini “lentur” bukan milik non-Euclidean
baris, hanya kecerdasan dari cara mereka diwakili.
Sifat Jarang
Euclid dan
geometri non-Euclidean secara alami memiliki sifat serupa, yaitu mereka yang
tidak tergantung pada sifat paralelisme. Kesamaan ini adalah subjek dari geometri netral
(juga disebut geometri absolut). Namun, sifat yang membedakan satu
geometri dari yang lain adalah orang-orang yang secara historis menerima
perhatian yang besar.
Selain perilaku baris sehubungan
dengan tegak lurus umum, disebutkan dalam pendahuluan, kami juga memiliki
berikut ini:
- Sebuah segiempat Lambert adalah segiempat yang memiliki tiga sudut kanan. Sudut keempat dari segiempat Lambert adalah akut jika geometri hiperbolik, sebuah sudut yang tepat jika geometri Euclidean adalah atau tumpul jika geometri adalah berbentuk bulat panjang. Akibatnya, empat persegi panjang hanya ada dalam geometri Euclidean.
- Sebuah segiempat Saccheri adalah segiempat yang memiliki dua sisi dengan panjang yang sama, baik tegak lurus ke samping disebut basis. Dua lainnya dari sudut segiempat Saccheri disebut sudut puncak dan mereka memiliki ukuran yang sama. Sudut puncak dari sebuah segiempat Saccheri yang akut jika geometri hiperbolik, sudut yang tepat jika geometri Euclidean adalah sudut tumpul dan jika geometri adalah berbentuk bulat panjang.
- Jumlah dari ukuran sudut segitiga apapun adalah kurang dari 180 ° jika geometri hiperbolik, sama dengan 180 ° jika geometri Euclidean, dan lebih besar dari 180 ° jika geometri adalah berbentuk bulat panjang. Cacat segitiga adalah nilai numerik (180 ° – jumlah dari ukuran sudut segitiga). Hasil ini juga dapat dinyatakan sebagai: cacat segitiga dalam geometri hiperbolik adalah positif, cacat segitiga dalam geometri Euclidean adalah nol, dan cacat segitiga dalam geometri eliptik adalah negatif.
Pentingnya
Non-Euclidean
geometri adalah contoh dari sebuah pergeseran paradigma
dalam sejarah ilmu pengetahuan
. Sebelum model pesawat non-Euclidean yang disajikan oleh Beltrami, Klein, dan
Poincaré, geometri Euclidean berdiri tertandingi sebagai model matematika
dari ruang
. Selain itu, karena substansi subjek dalam geometri sintetis
adalah pameran kepala rasionalitas, titik Euclidean pandang diwakili otoritas
mutlak. Non-Euclidean geometri, meskipun diasimilasi oleh peneliti dipelajari,
terus menjadi tersangka bagi mereka yang tidak memiliki paparan konsep
hiperbolis dan elips.
Penemuan
non-Euclidean geometri memiliki efek riak yang jauh melampaui batas-batas
matematika dan ilmu pengetahuan. Filsuf Immanuel Kant
pengobatan itu pengetahuan manusia memiliki peran khusus untuk geometri. Itu
adalah contoh utama tentang sintetis pengetahuan apriori, tidak berasal dari
indera atau disimpulkan melalui logika – pengetahuan kita tentang ruang
merupakan kebenaran bahwa kita dilahirkan dengan. Sayangnya bagi Kant,
konsepnya ini geometri unalterably benar adalah Euclidean. Teologi juga
dipengaruhi oleh perubahan dari kebenaran absolut untuk kebenaran relatif dalam
matematika yang adalah hasil dari pergeseran paradigma.
Keberadaan non-Euclidean geometri
berdampak pada “kehidupan intelektual” dari Inggris Victoria
dalam banyak hal dan khususnya adalah salah satu faktor yang menyebabkan yang
menyebabkan pemeriksaan ulang pengajaran geometri berdasarkan Euclid ‘s Elemen
. Masalah kurikulum yang hangat diperdebatkan pada saat itu dan bahkan subyek
dari bermain, Euclid dan Rivals modern, ditulis oleh penulis Alice in Wonderland.
Pertanyaan
:
1. Jelaskan pengertian geomtri npon
euclid!
2. Jelaskan perbedaan geometri non
euclid dan geometri euclid!
3. Jelaska sejarah geometri non
euclid!
4. Apa yang dimaksud geometri
elliptic?
5. Apa yang dimaksud geometri
hiperbolik?
Tidak ada komentar:
Posting Komentar